Text: Chapters 10 & 11.

Problems (p. 266-274) #1: 2, 4, 11, 13, 17 #2: 19, 20, 26, 29, 30 #3: 33, 35, 38, 39 #4: 46, 47, 49, 51, 55 #5: 58, 63, 65, 66	rotational variables linear and angular rotational inertia and kinetic energy torque work and energy
Problems (p. 297-304) #6: 5, 6, 8 #7: 33, 36, 41, 43, 49, 58	rolling angular momentum

Vocabulary:

Moment of Inertia, rotational inertia, radian, linear vs. angular measurements, torque, precession, radial acceleration, tangential acceleration, angular momentum, stability

Math: definitions:	$\omega = \frac{d\theta}{dt}$	$\alpha = \frac{d\omega}{dt}$	$s = r\theta$	$\vec{\tau} = \vec{r}$	$\times \vec{F}$
	$\vec{l} = \vec{r} \times \vec{p}$	$I = \sum mr$	$r^{2} = \int r^{2} dm$		
derived formulas:	$\overline{\omega} = \frac{\omega_i + \omega_f}{2}$	$\theta = \frac{1}{2} \alpha t^2 +$	$-\omega_i t + \theta_i$	$\omega_f^2 = \omega_i^2 + 2\omega$	$\Delta heta$
	$v = r\omega$	$a_t = r\alpha$	$a_c = r a$	$\omega^2 \qquad K = \frac{1}{2}$	$I\omega^2$
	$\sum \tau = \frac{dL}{dt} = I$	α L	$=I\omega$	$W = \int \tau d\theta$	$I = I_{cm} + Mh^2$
skills:	cross products				

SKILLS:

Key Objectives:

- □ be able to show/derive the derived formulas listed above.
- □ be able to solve a variety of word problems involving angular position, velocity and acceleration and their linear counterparts.
- □ be able to apply Newton's Second Law in angular form to a variety of situations.
- □ be able to calculate the moment of inertia for a given situation. (be prepared for a choice: one requiring calculus and one using just algebra. You will be given the chart from page 253 of the book.)
- \Box be able to apply energy principals to solve a variety of word problems.
- □ be able to apply the conservation of angular momentum to a variety of situations.
- □ be able to explain/use/understand the vocabulary and formulas listed above.
- □ be able to solve word problems numerically and symbolically.
- \Box be able to use the right hand rules discussed in class.
- □ be able to explain why a gyroscope precesses. (the rotating bicycle wheel hanging from the ceiling is an example of this.)
- □ be able to explain why an object is much more stable when rotating/rolling than non-rotating.

NAME: